
Abstract: Adaptive Portfolio Allocations 
 

Historically Mean-Variance optimization (MVO) has been the most popular 
methodology within the finance industry to create allocations for client portfolios. 
This methodology, however, typically has a few assumptions in practice that may 
not necessarily hold up through time: 1) Portfolio inputs- specifically asset returns, 
volatility, and correlation will persist through time 2) The method of correctly 
integrating these inputs into a portfolio allocation can be adequately captured by 
the current formulas . Academic papers have explored the idea that returns are the 
least likely of the three portfolio inputs to persist through time, and to that effect 
have created alternative risk-based portfolio allocation schemes such as Risk Parity 
and Minimum Variance. While these allocation schemes have historically performed 
well, we prefer a more adaptive approach that is free of too many assumptions 
about what is important and how portfolio inputs should be integrated.  We explore 
the possibility of creating a portfolio allocation scheme using a learning algorithm 
that can potentially still use all three traditional portfolio inputs, but would be 
capable of capturing unusual interactions or changes in the relative predictability of 
the inputs over time.  

To that effect we utilize a K-Nearest Neighbors methodology to create an 
adaptive portfolio allocation scheme using the traditional MVO inputs, and compare 
its performance to that of traditional MVO with a Maximum Sharpe objective 
function. K- Nearest Neighbors is a non-parametric, lazy learning algorithm that 
makes no assumptions about the distribution of the input or output variables. It is 
able to compare the relationships between the independent and dependent 
variables merely by observing instances that have independent variables most 
similar to the instance which we’re trying to predict, and capturing the average 
output from the “Nearest Neighbors.” Unlike MVO, which will only give a specific set 
of outputs (i.e. the portfolio allocation), K-NN will give a distribution of output 
variables (the K-nearest neighbors) which can be directly observed. Additionally, 
the relationships between the variables change over time, as the market’s responses 
to the input variables changes over time (i.e. a particular indicator value 10 years 
ago may not mean the same thing for market returns going forward as it did at that 
time). This makes the K-NN algorithm ideal for our purposes.  

We therefore created a set of K-NN portfolios that attempted to create 
optimal portfolio allocations to the input securities by using a forward-looking mean 
variance optimizer to “learn” the appropriate positions for a period of time. The K-
NN algorithm then attempted to use these outputs (controlling for 20 day lead) to 
learn what the best portfolio allocations would be based on the current inputs. This 
was done on a walk –forward basis without the benefit of hindsight. This is quite 
different from traditional MVO in that there was no forecast of return, risk, and 
correlation, but instead we used the historical values to create optimal portfolios. By 
controlling for the lead within the allocations, we were still able to allow the K-NN 
algorithm to utilize a sizable set of portfolio allocations without creating any 
forward-looking bias in the final allocations.  

Using the same inputs as the traditional MVO (albeit in a different fashion), 
we found that the Adaptive Portfolio Allocation approach using K-NN consistently 



outperformed the MVO portfolios over long periods of time for both asset classes 
and equity indices on a risk-adjusted basis. Furthermore, the K-NN portfolios 
showed lower risk and lower drawdowns in most cases.  The most pronounced 
difference in performance was allocating between stocks and bonds. In this case, the 
adaptive K-NN approach substantially outperformed MVO which is of major 
practical interest to most portfolio managers. 

In evaluating our K-NN portfolios, we wished to analyze how the algorithm 
responded to the various portfolio inputs. To that effect, we analyzed the 
relationship between the K-NN portfolio’s performance to a range of allocation 
schemes, including Mean-Variance, Minimum Variance, Maximum Return, Equal 
Weight, Risk Parity, and Mean-Reversion. In analyzing the relationships between 
these portfolios over time, we observed the traditional portfolio to which the K-NN 
returns most closely correlated. Assuming that MVO is in fact the correct model for 
asset returns, we would expect that the K-NN historical allocations would correlate 
most significantly to an MVO/Max Sharpe allocation approach on the same time 
series. This would be the case if returns, volatility and correlation were all 
predictable and should be integrated according to the model to generate optimal 
allocations.  In contrast, we found surprisingly that allocations over time for the K-
NN approach had high correlations to risk-parity, minimum-variance, and equal 
weight portfolios. Furthermore, the correlations to a traditional MVO allocation 
were quite low. However, these correlations were time-varying. This suggests that 
traditional MVO is not always the best model and should be used with caution. The 
fact that the attribution to various traditional allocation profiles varied across asset 
pairs suggests that the optimal model may vary itself according to the universe 
chosen. This is a major challenge for a traditional MVO approach, but is easily 
addressed within our multi-asset Adaptive Portfolio Allocation framework. 

 

 

 

 

 

 

 



Adaptive Portfolio Allocations 

David Varadi and Jason Teed 

 “You have to be fast on your feet and adaptive otherwise your strategy is useless”-   Charles de Gaulle 

 

Perhaps the most important concept that evolved in the last ten years for systematic 

investors was the necessity for models to adapt to changing market environments. It 

is well known to financial economists that markets are non-stationary, and this 

implies that their behavior can change over time. Not only do market returns vary 

over time, but the autocorrelation matrix that defines whether a market is for example 

trending or mean-reverting can also change dramatically. This creates a moving 

target for individuals that try to create systems to beat the market. Just as the archer 

aims for the bull’s-eye: the target moves, hitting nothing but air. That is why bringing 

in an Olympic archer doesn’t guarantee success, nor does bringing in a world class 

mathematician or physicist to predict the market. That doesn’t mean that talent will 

not help (the best firms do have the best talent), but rather whether it is a human or a 

computer program, one must recognize that we need to aim for where the target is 

likely to be and constantly re-calibrate based on how conditions are changing.   

The most important technology for money managers to adopt is portfolio 

allocation. This is the crucial process of determining the appropriate weightings of 

different asset classes and/or strategies in a portfolio. The current paradigm has not 



really evolved much from a standard Markowitz “Mean-Variance” approach, created 

in 1952. This model combines expected returns, volatility, and correlation between 

securities into one composite portfolio allocation based upon a rigorous 

mathematical approach. In practice, these forecasts/expected inputs are often 

replaced with historical values. Mean Variance Optimization (MVO) is still one of the 

most widely utilized allocation models in the industry despite the fact that the model 

makes the unrealistic assumption that portfolio inputs will remain stationary. While a 

large cohort of money managers and even academics are quick to criticize or point 

out the deficiencies of MVO, no one has really proposed anything that is truly 

different or better.   

A lot of different risk-based schemes such as Minimum Variance, Risk Parity and 

Maximum Diversification have gained popularity over the years. However, all these 

methods share the same basic mathematical framework to combine inputs using 

MVO as a foundation. They differ only in their assumptions of the importance of 

various inputs such as returns, volatility, or correlation.  These methods ignore return 

inputs in isolation since historical returns are widely considered to be very noisy and 

contain little information. (Chopra, Ziemba, 1993) Instead, return inputs are assumed to 

have either a value of zero or are related in some way to volatility or correlations (or 

both). To their credit, many of these approaches achieve superior Sharpe ratios out 



of sample across a wide variety of real world data sets. (Chaves, HSU, Li, Shakernia, 

2011) 

But many of these studies (like virtually all trading system or model 

development) were done with the benefit of hindsight. It is always easy to show you 

can hit the target when it isn’t moving. What we really want to do is to develop a 

method that can learn to hit the target and change its input assumptions over time. 

  This naturally leads us down the path of creating algorithms that can learn 

from past data and evolve over time to change the method for creating portfolio 

allocations. The simplest and most intuitive machine-learning algorithm is the K-

Nearest Neighbor method (K-NN). We will describe how this method works in greater 

detail, but the most important thing to understand is that it is a form of “case-based” 

reasoning.  That is, it learns from examples that are similar to current situation by 

looking at the past. It shares a lot in common with how human beings make 

decisions. When portfolio managers talk about having 20 years of experience, they 

are really saying that they have a large inventory of past “case studies” in memory to 

make superior decisions about the current environment. The challenges required to 

harness this experience are the absence of configural thinking, the presence of 

cognitive biases, and an imperfect memory.  

Fortunately, for a quantitative approach, we have the luxury of nearly 

unlimited data from which to gain effective experience. Unlike a portfolio manager, 



the K-NN algorithm also does not have the challenge of being biased or capable of 

remembering information. Furthermore and perhaps most importantly, K-NN employs 

a moving-window approach and continues to learn as time passes. While a portfolio 

manager or trader can get trapped in the past by looking at the market the same 

way, K-NN continues to attempt to adapt over time as conditions change. 

Traditional portfolio allocation assumes that the inputs will be combined 

mathematically in a set manner. Returns are combined linearly while risk is 

combined as a quadratic function of volatility and correlations. This has a strong 

theoretical basis, but ignores several possibilities: 1) what if certain inputs are more 

or less important? 2) What if the appropriate method of combination requires a more 

complex function? 3) What if certain asset classes or strategies within a specified 

universe have varying input predictability? For example, what if high-yield bonds 

have predictable returns but Treasurys do not?  4) What if we want to combine a 

large set of return and risk-based indicators to determine portfolio allocation for 

which there is no theoretical foundation or calculation? This is but a small subset of 

possible questions for which there are no good answers or solutions within this 

framework. 

The benefit of using a K-NN approach is that we can inherently address all of 

these issues simultaneously. Furthermore, K-NN is ideal if we think that there are 

non-linearities in the relationships between the variables. This simple machine-



learning algorithm permits a more flexible and data-adaptive approach. The K-

nearest neighbor (K-NN) algorithm is a lazy-learning methodology, meaning that it 

does not train on the data before a query is made to it. It is also what is called non-

parametric, that is, it makes essentially no assumptions about the behavior variable 

being predicted or the input variables, but is able to learn from relationships between 

variables, requiring no further inputs about variable distributions or correlations.  

By training the K-NN to learn the optimal portfolio allocation for a given case 

example or set of similar cases, it can generate portfolio allocations that do not map 

to historical inputs in any structured manner. For example, if we train K-NN to 

optimize the Sharpe ratio, the mapping between the inputs and the outputs may not 

have a linear relationship to the final answer. Some inputs may not have much 

influence, while others may have more.  Alternatively, a combination of inputs may 

yield a very pronounced prediction when they appear in a certain configuration.  

Ultimately K-NN does not use a function to compute these mappings. It simply says: 

“what happened historically when I saw patterns that are close to the current 

pattern?”  The most common example of how K-NN is used is to predict future price 

movements from past price patterns. An example from Market Rewind’s “Time 

Machine” shows clearly how this works below: 



 

 

In this case, the pattern matching engine uses correlations to find the top five 

nearest matches to the current price pattern in order to see what happened 

historically. The choice of the number of nearest matches (or neighbors) is the “K” in 

K-NN. This is an important variable that allows the benefit of allowing the use the 

ability to trade-off accuracy versus reliability. Choosing a value for K that is too high 

will lead to matches that are not appropriate to the current case. Choosing a value 

that is too low will lead to exact matches but poor generalizability and high sensitivity 

to noise.  The optimal value for K that maximizes out-of-sample forecast accuracy 

will vary depending on the data and the features chosen. The picture below clearly 

demonstrates this tradeoff: 



 

At K=1, the data is overfit so that every green and red dot are accounted for 

separately. However, it is unlikely that this exact classification of the decision space 

will generalize accurately going forward. In contrast, with K=15, there are mislabeled 

dots on either side of the decision boundary but generally the positioning of the 

boundary is likely to lead to reliable and accurate prediction out of sample. If we set 

K=N, then we will always predict whichever outcome (or colored dot) that is most 

common in the dataset.  

To help clarify how K-NN works it is useful to look at an example where we 

use the method to create a forecast using a popular technical indicator- the RSI.  

 

A Simple 5-Step Guide to Implementing K-NN 

Step 1: Identify a feature or set of features to match to historical cases in the past 

example: let’s use RSI(2) as an indicator  

  
     



Step 2: Find the current case For today 

  example: today's RSI(2)= 84 

  
     Step 3:  Choose "k" (in this case let’s say we want the top 5 matches) k=5 

     Step 4: Compute a distance metric to find nearest neighbors and rank the closes 

matches  

     Step 5: Find the next day returns for the nearest matches and average them to find 

the forecast 

     Top 5 Historical Matches In the Last Year 

 
     RSI(2) Distance Rank Next Day Return 

 84.2 0.2 1 0.50% 

 83.8 0.2 2 -0.41% 

 83.7 0.3 3 0.24% 

 84.6 0.6 4 -0.36% 

 84.9 0.9 5 -1.38% 

 
     Tomorrow’s Forecast: 

 

-0.28% 

 As stated earlier, the K-NN algorithm makes essentially no assumptions 

about the behavior of the independent or dependent variables, that is, it merely 



observes the relationship between the variables over the lookback window, whatever 

they might be. The algorithm would work for any type of relationship that exists 

between the independent and dependent variables. Mean-Variance (MVO) makes 

the assumption that returns, volatility and correlation should be integrated using very 

specific formulas. MVO assumes that these inputs are always relevant to portfolio 

allocation, and they are always combined in the same proportion every time. As a 

consequence, MVO lacks the ability to adapt to changing relationships and while it is 

a robust framework it may therefore be the wrong model to use over time. 

 One modification that K-NN often requires is normalization of the inputs so 

that their relative standard deviations are the same. This is necessary particularly if 

the features use different scales or have different variances in practice. This 

normalization helps to ensure consistency in relating a current set of features to 

examples of the same feature in the past and also helps to ensure that the 

importance of different features in the composite distance metric is equivalent by 

design. For example, if we used an RSI indicator that ranged from 0-100 as one 

feature, but used a ROC (rate of change) indicator which was represented in returns 

as another feature, there would be substantial noise in matching the current case 

appropriately with past examples. 

 

 



Methodology 

Note: for a simple 5-step example of how we created adaptive portfolio allocations please see Appendix A 

 Testing was performed on pairs of four major asset classes (Large-Cap 

domestic stocks, Intermediate Treasurys, Gold, and Broad Commodities) and 

separately on pairs of four major stock indexes.1 The period tested for the asset 

classes was from 4/13/1976 to 12/31/13, as we began at the first date for which daily 

data was available for all securities plus a 2000 day training period. We also 

maximized the amount of data available to our models trained on equity indices, 

resulting in a starting date of 8/9/1995. Our overall goal was to maximize the period 

tested for each comparative group and was limited only by the shortest asset class 

for which daily observations were available. We feel that while the results of asset 

classes are not directly comparable to the equity indices as a result, as we are 

exploring the feasibility of a methodology rather than selecting appropriate securities 

for use and backtesting a strategy, that this approach is acceptable.  

 The training for each model began with learning the best in-sample portfolio 

allocations for the lookback period. For each day, we took the returns of each 

security, twenty days into the future, and used an MVO to calculate the portfolios 

with the highest Sharpe, minimum variance, and maximum return, the latter two 

calculated only on the S&P vs Treasurys and to be utilized only in an attribution 

analysis: the focus of this paper will be on maximizing portfolio Sharpe. This was 



repeated for every day within the training set up to twenty days short of the end of 

the testing period, beyond which it was not possible to calculate a 20 day portfolio. 

This avoided any assumptions in future security returns as we used the actual 

returns over the forecast horizon to create optimal security weights over the horizon 

rather than predicting them.  

Once the training was finished for a pair, we calculated the inputs for our K-

NN algorithm which were separated into two groups. The first group was a relative 

form of our indicators while the second was a self-normalized form of the indicators. 

The indicators that we chose were simply security momentum, standard deviation 

and correlation to ensure that our K-NN algorithm didn’t have access to any 

information that the MVO didn’t have, but merely used it differently. 

Indicators 

 Indicators that were used as inputs for both the K-NN portfolios and the MVO 

portfolios were historical returns, volatility, and correlation. The inputs calculated for 

the MVO for comparison were based on six sets of lookbacks: MVO portfolios were 

run using return and standard deviation indicators based on lookbacks of 20, 40, 60, 

120, and 252 days as well as inputs which were a weighted average of all of these 

parameters. Correlation matrices were also based on these lookbacks. 

 For the K-NN inputs, the indicators calculated were of two types, resulting in 

two different sets of K-NN runs, relative return based indicators “Rel”, and self-



normalized indicators ”N”. As mentioned previously, K-NN algorithms perform better 

when their features are normalized so that any one feature does not dominate the 

distance calculation. The Relative return based indicators were calculated such that 

the values of each security were normalized relative to the other security in the 

portfolio, explicitly, the return algorithm was: 

          
                                            

                        
  

While the equation for the relative Standard Deviation was: 

          
                                  

   (             )
  

As both of these indicators were calculated on a relative basis, the value 

calculated for the indicator of asset B is merely a mirror of asset A’s indicator, 

therefore, only the indicators calculated on asset A were included in the Rel_K-NN 

portfolios which, when combined with correlation, resulted in three final inputs for the 

Rel_K-NN portfolios. As correlations are inherently relative in nature, the correlation 

was self-normalized for both sets of runs, that is, it was normalized by its own 

distribution, calculated as follows: 

          
                           

   (           )
  

The Self-Normalized Return indicator was normalized in similar fashion for 

both securities, and both were added to the feature space of the K-NN optimizer. 



 

          
                         

              
  

Finally, the self-normalized Standard Deviation Indicator was also normalized 

in this fashion, resulting in 5 final inputs for the Self-Normalized or “N_K-NN” runs: 

          
                 

   (      )
  

Where we created the indicators in a nested fashion, the same lookback was 

used within the nesting, resulting in a doubling of the required data to calculate the 

indicator value, i.e. a lookback of 20 would require 40 days to initialize.  

 Indicators were created for periods of 20, 40, 60, 120, 252, and a weighted 

average of these values. This was done to determine how sensitive our learning 

algorithm would be to parameter selection compared to MVO and to give us a more 

robust sense of the success/fail rate of our methodology.  

 After having calculated the inputs to our K-NN algorithm, we entered them 

into the feature space, and performed our K-NN analysis. As mentioned before, we 

used Euclidean distance to measure the difference between different day’s indicator 

values, and we also assumed that each indicator was equally important by weighting 

it equally with the other indicators. Our only assumption was that we knew nothing 

about the importance of the indicators in the feature space or their relationships with 

one another. Continuing in this fashion, we also did not select a specific K days with 



which to compare our current day, but rather selected a range of Ks to make our 

selection base more robust to potential changes in an “optimal” K selection. The K’s 

chosen were in percentages of the size of the training space, which were 5%, 10%, 

15% and 20% resulting essentially in a weighted average of the top K instances. 

Additionally, when we performed the K-NN analysis, we used lookback windows of 

2000, 1500, and 1000 and averaged the resulting output values. We did this so that 

we could ensure that our results were not dependent upon choosing any particular 

lookback period. We felt that this kept the algorithm more robust to market changes 

in feature relevance, though one could most certainly train for an optimal lookback 

window and top K on a forward-looking basis, we’ll leave it to the reader to explore 

these concepts.  

 For every twentieth day, we calculated the K nearest neighbors from the 

lookback period length to minus 20 days (to avoid any look-ahead bias as we trained 

our output variable with returns twenty days in the future). We repeated this for each 

lookback period and indicator type (“Rel” and “N”) and averaged each model’s top K 

portfolio weights (our K-NN dependent variable) to arrive at our final portfolio weight. 

(i.e. Rel_K-NN20, N_K-NN20, Rel_K-NN40, etc.). Once weights were calculated for 

the entire testing periods, we calculated the returns of each portfolio over the testing 

period and collected the results.  



 For comparative portfolios, a traditional Mean-Variance Optimizer using Max 

Sharpe as the objective function (tangency portfolio) was run on a monthly basis 

using the raw indictors described above. Six portfolios based on these indicators 

were calculated to compare against our K-NN portfolios (i.e. MVO20, MVO40, 

MVO60, etc.). We additionally created out-of-sample portfolios based on Minimum 

Variance, Maximum Return, Equal Weight, Risk Parity, and Mean reversion (using 

the MVO, but with return signs of opposite value) using the same parameter sets 

where applicable.  

 Additionally we wished to test the efficacy of K-NN algorithms on multi-asset 

portfolios without introducing the problem of dimensionality with too-large a feature 

space. The problem of dimensionality occurs when the size of the feature space is 

large relative to the number of observations available. Therefore, to explore multi-

asset portfolios, we took the average weight of each security from a single-pair run, 

and averaged them across all pair runs. This was done for asset classes as a group 

(portfolio of 4), and equity indices as a group (portfolio of 3), and calculated the 

returns for the portfolios. We then ran a traditional MVO portfolio containing these 

securities for proper comparison.  

 Lastly, to test the efficacy of using Returns, Variance, and Correlation in 

creating portfolio allocations, we compared the results of our K-NN portfolios based 

on optimizing for maximum Sharpe on six major pairings (excluding commodities) 



with our out-of-sample comparative portfolios. The comparison was done with a 

rolling 60 day correlation between the K-NN portfolios returns and returns of the 

comparative portfolios. We then ranked the K-NN portfolio by the out-of-sample 

portfolio with which it was most closely correlated to give an idea of how the 

algorithm was behaving through time. 

 This process was repeated on the S&P vs. Intermediate Treasurys portfolio 

utilizing a Minimum Variance and Maximum Return K-NN as mentioned earlier, in an 

attempt to show how the relationship between these portfolios and their out-of-

sample counterparts differ.  

Results: Portfolios of two assets: 

 To compare the efficacy of K-NN over traditional MVO, we aggregated the 

performance statistics of the six K-NN models created from the differing indicator 

lookbacks and performance statistics of the MVO portfolios across the same 

lookback parameters that we tested. Results were grouped into two broad sets, 

heterogeneous- basic asset classes (S&P, Gold, Intermediate Treasurys, and Broad 

Commodities) and homogenous- equity indices (S&P 500, Dow Jones Industrial 

Average, and Russell 2000). 

The results demonstrated that the Adaptive Portfolio Allocation approach 

tended to outperform MVO portfolio allocation on a risk-adjusted basis. This was 

broadly true regardless of the indicator set chosen (whether “Rel” or “N” inputs into 



K-NN). On 5 out of the 6 asset class pairs, the Sharpe ratio achieved for either K-NN 

model was greater than the comparable MVO portfolio. The greatest differential in 

portfolio performance between K-NN and MVO was in the portfolio consisting of the 

S&P 500 and Intermediate Treasurys. In this case the adaptive K-NN approach had 

a Sharpe ratio that was over 30% higher than MVO. K-NN also had higher returns, 

lower risk, and lower drawdowns trading the stock and bond pair than mean-

variance. This result is an especially important finding because most portfolio 

allocation decisions for active portfolio managers revolve around the optimal 

allocation between stocks and bonds. 

On equity indexes, we found that K-NN was also superior- outperforming 

MVO on two out of three pairs, as well as beating on a raw return basis. 

Interestingly, we also found that the K-NN portfolios also improved (lowered) the 

maximum drawdown on each run, which was also seen in 4 out of the 6 asset class 

portfolios.    

Results: Multi-Asset Portfolios 

 In our multi-asset portfolios, we saw similar outperformance for Adaptive 

Portfolio Allocations versus MVO. Using the multi-asset approach on asset classes, 

the K-NN methodology beat MVO methodology on average by 21.3% on a 

risk/adjusted or Sharpe ratio basis.  We did also note that the distribution of the 

back-test returns, standard deviations, and DD across parameters for the MVO 



approach was substantially higher than K-NN approach. This suggests that the K-NN 

methodology is more robust than MVO to the choice of lookback period for input 

parameters.  

 In mapping out the portfolio weights through time, the K-NN portfolios 

demonstrated much more stability through time, making more balanced portfolios at 

any point in time than the comparable MVO portfolio.  

We did also note that the 252 day performance of the MVO on asset classes 

seemed to be a special case in that its returns and Sharpe were much higher than 

other parameter lengths on the MVO portfolios. This likely reflects the momentum 

effect that is documented in countless academic studies. While it has been persistent 

historically, there is no guarantee it will persist into the future.  

 We also wanted to determine whether or not there was any synergy in 

combining MVO and K-NN. To that effect, we created a 50/50 portfolio combination 

of these portfolios and calculated the resulting statistics. For the period tested, there 

does seem to be some synergy in combining these two methodologies in that the 

average portfolio Sharpe was higher than for K-NN or MVO alone.  

 Within our equity index portfolios K-NN continued to outperform mean 

variance optimization, on a Return, Standard Deviation, and Max DD basis. Once 

again, the portfolio weights were much more stable through time. The average return 

on our K-NN portfolios was a 0.88% higher on an annualized basis, and average 



standard deviation was 12 basis points lower. We did not find that there was, on 

average, a synergistic relationship between the two types of portfolios, with the 

Sharpe of a 50/50 blending of them still underperforming the K-NN portfolios.  

Portfolio Attribution Analysis 

 In the comparison to our out-of-sample comparative portfolios, we found that 

by-and-large, that equal weight and risk parity had the highest correlation on average 

with the K-NN portfolios without exception. This would seem to indicate that the K-

NN algorithm found a weak relationship between our historical inputs and future 

returns, defaulting it either to an equal weight algorithm (no information) or risk parity 

(information on volatility is important, but correlations and return are not, as neither 

are required to calculate a risk parity portfolio). Of course, this also reflects the 

research that risk-based portfolio allocation using risk parity or minimum variance 

has validity. Our hypothesis is that relative returns do in fact have limited information 

and they dilute the ability for K-NN to pick up a meaningfully different result than 

equal weight much of the time. The volatility and correlations may in fact have some 

meaningful information but this is probably diluted by the relative return feature in 

computing distance. Interestingly, very few pairs showed any relationship with the 

out-of-sample MVO portfolio, the highest being S&P500 vs. Gold, correlating highly 

only 5.87% of the time. Since MVO weights are dominated by relative return 

estimates, this seems to support our contention. 



 

 To test this idea further, we performed an attribution analysis on a K-NN 

portfolio on the S&P vs. Intermediate Treasurys that was trained on the optimal 

maximum return portfolio allocations, which only requires security return as an input. 

This portfolio represents the highest returning portfolio on the efficient frontier. We 

found that this model correlated most highly with Equal Weight 77% of the time, far 

beyond the Equal weight attribution of the maximum Sharpe K-NN models, 

suggesting that the inputs could not accurately predict the maximum return weights 

and the future security returns used to create them. Therefore, even though our 

inputs may have had financially beneficial information contained within them, they 



could not be utilized to determine what the future returns going forward would be, or, 

indeed, whether one security over another would outperform. An equal weight 

outcome from the K-NN portfolio suggests that there was essentially no relationship 

between returns of the securities over the subsequent 20 day period, and the input 

indicators. This further implies that blindly using MVO using historical inputs in 

portfolio allocation could cause highly error-prone weighting schemes. 

  

 

 We repeated this exercise for testing the efficacy of variance and correlation 

together by comparing a Minimum Variance K-NN portfolio on the same pair and 

performing an attribution analysis (we used Minimum Variance as the target 

objective function and training algorithm). We found that the majority of the time, that 

the K-NN portfolio correlated most highly with the traditional minimum variance 

portfolio, suggesting that there was a significant relationship between the feature 

space and the future variance and correlation of the securities, upon which the 

learned portfolio allocations were based. The second most highly correlated out-of-

sample portfolio was the risk parity portfolio, which uses volatility only in its 



calculation.  Again these results support our initial hypothesis—at least for stocks 

and bonds. 

Conclusion 

In this paper we introduced a new framework for adaptive portfolio allocation using 

K-NN as a base learning algorithm. This framework permits substantial flexibility in 

the choice of indicators for portfolio allocation, and it also allows for adaptation to 

changing relationships over time in the portfolio inputs used to generate allocations. 

We compared this simple K-NN approach to a dynamic MVO approach on a 

maximum Sharpe objective function and found that K-NN consistently outperformed 

on both heterogeneous and homogenous data sets on a risk-adjusted basis. Upon 

further analysis using portfolio attribution, we found that the adaptive portfolio 

allocation approach did not rely as much on relative returns as it did on volatility and 

correlations over time. Furthermore, the fact that allocations were often similar to an 

equal weight portfolio demonstrated the general uncertainty of the portfolio indicator 

inputs in aggregate. The adaptive allocation approach managed to dynamically 

balance this uncertainty over time and shift more towards a probabilistic allocation 

that did not overweight or over-react to poor information. This was demonstrated in 

the superior out-of-sample performance and also the stability of the transition maps 

which show the historical allocations to various assets as a function of time versus 

MVO which showed both considerable noise and turnover. Future research could be 



taken in a lot of different directions. Clearly superior inputs, indicators, or forecasts 

could dramatically improve performance and that is a natural avenue to explore. 

There is no question that the K-NN approach itself can be used separately as a 

component to forecast each individual input—that is use K-NN to forecast returns, 

volatility and correlations separately. Furthermore, a lot of work could be done in the 

area of using this approach on multiple assets simultaneously rather than just using 

pairs. Finally, another interesting area is to continue to explore the use of adaptive 

portfolio allocations as an input to be combined with a more traditional approach. 

Ultimately we have demonstrated at the very least that the Adaptive Portfolio 

Allocation approach is both conceptually appealing and shows promising results for 

further research. 
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Appendix A:  
 
A Simple 5-Step Guide to Implementing K-NN for Adaptive Portfolio Allocation 
 

Step 1: Choose normalized measures of the three features used for portfolio allocation 
example: relative return (stocks to bonds), relative volatility (stocks to bonds) and relative correlation (of 
stock/bond) 

        Step 2: Find the current case For today 
    

  
Rel Ret Rel Vol Rel Cor 

   example:  87 56 63 
   

        

        Step 3:  Choose "k" (in this case lets say we want the top 5 matches) therefore we set K=5 
  

        Step 4: Compute a distance metric to find nearest neighbors and rank the closes matches. In this paper we 
used Euclidean Distance which is calculated as: 

 
Where q represents today’s values of indicators 1:n, and p represents the value of indicators 1:n of the all the 
instances in the lookback window, taken one at a time. 

        Step 5: Find the next day returns for the nearest matches and average them to find the forecast 
 Find the closest K instances within the lookback window by distance, and average the output values 

for those K instances to arrive at the next period allocation.  
 

        Top 5 Historical Matches In the Last 2000 Days 
    

        
Rel Ret Rel Vol Rel Cor Distance Rank 

Optimal Next Period 
Allocation 

       (Euclidean)   % in stocks % in bonds 
 88 55 64 1.73 1 55% 45% 
 89 57 62 2.45 2 62% 38% 
 85 53 63 3.61 3 53% 47% 
 90 60 65 5.39 4 57% 43% 
 83 49 70 10.68 5 64% 36% 
 

        Next Period Portfolio Allocation: % in stocks % in bonds 
  

(average of allocations for all nearest matches) 58.2% 41.8% 
   

 
 
 



Appendix B: Data Sources 
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From To Symbol Name Source Notes

Treasury 1/2/1962 2/28/1994 USGG10YR Index US Government 10 Year Yield Bloomberg Yield to Price Conversion

Treasury 2/28/1994 7/26/2002 XIUSA000MJ Barclays Intermediate Treasury TR USD Morning Star

Treasury 7/26/2002 Present IEF IEF US Equity Bloomberg

Gold 4/1/1968 Present GOLDLNPM London Gold PM Bloomberg

CCI 9/4/1956 Present CCI Continuous Commodity Index Bloomberg

S&P500 2/24/1950 12/31/1987 ^GSPC S&P 500 Yahoo

S&P500 1/4/1988 Present SPTR SP500 Total Return Bloomberg

Russell 2000 9/11/1987 Present ^Rut ^Russell 2000 Yahoo

Dow 9/30/1987 Present XIUSA000PF Dow Jones Industrial Average TR USD Morning Star


