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Abstract: An investor more often than not seeks a right direction rather than obnoxious returns on his 

portfolio, and the biggest challenge for an investment advisory/fund management firm is to provide a 

clear direction in this chaotic market. An investor seeks to build his wealth over a period of time through 

rational investing and avoiding rash speculation, and for this he would need a healthy advice from time 

to time. An intelligent system built with robust inputs from a team of   financial experts would be an 

ideal tool to help an investor make better judgments and avoid losing capital to speculation or 

sentimental portfolio adjustments. This paper provides a base upon which such an intelligent system can 

be built to provide sound investment advice to millions of clients who invest with one important purpose 

in mind – retirement planning. The paper attempts at building a financial retirement planning model 

using advanced mathematical techniques. The paper starts by developing the formal mathematics of the 

lognormal random walk model, Central Limit Theorem is applied to the model to argue that under three 

strong assumptions the values of risky investments at any time horizon are lognormally distributed. 

After a thorough understanding of a client’s current financial status, financial needs and financial goals 

the inputs are fed into an enhanced random walk model developed for retirement planning. The 

enhanced random walk model is designed to accommodate monthly savings, varying time period, 

varying mean and standard deviation (arising out of varying asset allocation depending on client 

profile), time to retirement and initial portfolio value. As the enhanced random walk model gets tougher 

to provide a deterministic algorithm after accommodating several input variables we use Monte Carlo 

simulation technique to perform simulations to the tune of 105 and above to in order to obtain the 
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distribution of unknown probabilistic entity that then is read from a cumulative density function graph 

that plots probabilities against the desired retirement goal. The model includes periodic additions to or 

withdrawals from a portfolio, salary growth, inflation, investment expenses, and asset allocation among 

cash, bonds and stocks using artificial intelligence technique (fuzzy logic). Financial service institutions 

face a difficult task in evaluating clients risk tolerance. It is a major component for the design of an 

investment policy and understanding the implication of possible investment options in terms of safety 

and suitability. Instead of trying to build conventional mathematical models to arrive at a suitable asset 

allocation, task almost impossible when complex phenomena are under study, the presented 

methodology creates fuzzy logic models reflecting a given situation in reality and provide solution 

leading to suggestion for action. A rigorous architecture is worked out using fuzzy logic controls to 

arrive at a risk tolerance ability of a client based on his annual income and total networth, this new 

parameter is fed into another fuzzy logic control model that takes into account the age of the investor as 

well and exposures into stocks and bonds as a function of his risk tolerance ability and his age and is 

designed to prepare an appropriate asset allocation for the investor into the three basic asset classes: 

stocks, bonds and cash. The yearly returns of each of the three asset classes are meticulously calculated 

to provide utmost accuracy to the results of the model, the calculations are provided as appendix for the 

curious readers. The cumulative density function graph provides an estimate of the success of the 

retirement planning chalked out in the paper, it is assumed that a client would want the chances of his 

meeting his retirement goal should be atleast 50%, a figure lower than this would mean inadequate 

savings and then the parameters fed into the enhanced random walk model need to be looked at again 

and reworked and re-simulated. Another important aspect we looked at is the standard of living of a 

client and his willingness to lower down his standard of living post his retirement, his flexibility 

determines the kind of relative standard of living he wishes to adopt post retirement and that would 

determine his withdrawal rate which in turn would determine the survival rate of his portfolio. We 
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discuss the limitations of this model and future scope of work on the base provided by the paper, the 

assumptions made in the preparation of the model and their impact in the results thus obtained.  

Keywords: Random Walk Theory, Lognormal Distribution, Retirement Portfolio Planning, Asset 

Allocation, Artificial Intelligence, Fuzzy Logic, Monte Carlo Method, Stochastic Differential Equations 

 

1 Introduction 

We develop a lognormal random walk model for retirement planning. We start by discussing continuous 

compounding for risk-free investments.  

Suppose we have ѕ0 dollars and invest it in a savings account or other risk-free investment earning a 

yearly interest rate of µ. What is the value s1 of our investment at the end of one year? 

ѕ1 = ѕ0+ѕ0µ = ѕ0(1+µ)       (Eq1.1) 

In general, if interest is compounded n times per year, we have:  

ѕ1 = ѕ0(1 +µ/n)
 n       

(Eq1.2) 

What happens if interest is compounded more and more frequently? In other words, what happens as n 

gets larger and larger in equations (1) and (2)? In the limit, we have: 

ѕ1 = ѕ0lim𝑛→∞  1 +
µ

𝑛
 
𝑛

      (Eq1.3) 

r= lim𝑛→∞  1 +
µ

𝑛
 
𝑛

- 1      (Eq1.4) 

To evaluate the limits in equations (3) and (4) we use L'Hôpital's rule. Let x = 1/n. Then: 

lim𝑛→∞  1 +
µ

𝑛
 
𝑛

= 𝑒lim 𝑥→∞ 𝑙𝑜𝑔   1+µ𝑥 
1
𝑥  

lim𝑥→∞ 𝑙𝑜𝑔  1 + µx 1/𝑥= lim𝑛→∞ µ/(1 + µ𝑥 𝑛  = µ 

lim𝑛→∞  1 +
µ

𝑛
 
𝑛

= 𝑒𝜇  

Thus our equations (Eq1.3) and (Eq1.4) become: 
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ѕ1 = ѕ0𝑒𝜇     (Eq1.5) 

r = 𝑒𝜇  – 1    (Eq1.6) 

               µ= log(r+1)                                (Eq1.7) 

These equations tell us what happens if interest is compounded continuously, at every instant of time 

over the year. This is called continuous compounding and µ is called the continuously compounded rate 

of return of our investment. Suppose we have a risk-free investment s with an initial value of s0 that 

earns a continuously compounded rate of return µ.  

Let: s(t) = the value of the investment at time t 

Then: 

ѕ(t)= ѕ0𝑒𝜇𝑡  

Consider the value of the investment a short time later, at time t + dt: 

ѕ(t+dt)= ѕ0𝑒𝜇 (𝑡+𝑑𝑡) = ѕ0𝑒𝜇𝑡 𝑒𝜇𝑡  = ѕ(t) 𝑒𝜇𝑡  

Let: 

ds(t) = the growth of the investment over the time interval [t, t + dt] 

Then: 

ds(t) = s(t + dt) – s(t) 

= ѕ(t) 𝑒𝜇𝑑𝑡 – s(t) 

= ѕ(t) (𝑒𝜇𝑑𝑡 – 1) 

ds(t)/dt = 𝑒𝜇𝑑𝑡 – 1 

This equation holds at all times t, so we have the following differential equation which describes the 

behavior of our risk-free investment with continuous compounding: 

ds/s = 𝑒𝜇𝑑𝑡 – 1   Eq(1.8) 

1.2 Risky Assets 
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In the previous section we examined risk-free investments that earn interest continuously over time. In 

this section we turn our attention to risky investments where the change in value of the investment over 

time is uncertain.  

Let ѕ be a risky investment with initial value ѕ0. 

Consider a small time interval dt and let ѕ1 be the value of our initial investment ѕ0 after dt time has 

passed. Over this short time interval the rate of return of our investment is some random variable Y1, 

and the value ѕ1 of our investment at the end of the time interval is: 

ѕ1 = ѕ0(1 + Y1) 

Now consider a second small time interval dt. Let ѕ2 be the value of our investment at the end of the 

second time interval, and let Y2 be the random variable for the rate of return of our investment over the 

second time interval.  

Then: 

ѕ1 = ѕ0(1 + Y1) = ѕ0(1 + Y1)(1 + Y2) 

As time goes on, over each small time interval dt the value of our investment changes by some small 

random amount. Let ѕn be the value of our investment at the end of n time intervals, and let Yi be the 

random variable for the rate of return of our investment over the time interval i.  

Then: 

ѕn= ѕ0 (𝑛
𝑖=1 1 +  Yi) 

Take the logarithm of both sides of this equation : 

log(ѕn)= log (ѕ0 (𝑛
𝑖=1 1 +  Yi)) 

              = log (ѕ0) +  (1 +  Yi)𝑛
𝑖=1  

log(ѕn/ѕ0) = log (ѕn) – log (ѕ0) 

           =  (1 +  Yi)𝑛
𝑖=1  

For each i, let Zi be the random variable log(1+Yi). Then our equation becomes: 
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log(ѕn/ѕ0) =  (Zi)𝑛
𝑖=1                                 (Eq1.9) 

1.3 Lognormal Random Walks 

The equation (Eq1.9) which we derived in the previous section is not very useful without additional 

information about the distribution of the random variables Yi which give the rate of return of the 

investment over time interval i. 

We now make three strong assumptions about these random variables: 

1. The random variables Yi are independent. What happens at one time interval does not affect 

what happens at subsequent time intervals. The market has no memory." 

2. The random variables Yi are identically distributed. The means, standard deviations, and other 

attributes of the probability distributions do not change over time. 

3. The random variables Yi have finite variance. 

Recall equation (Eq1.9) from the previous section: 

log(ѕn/ѕ0) =  (Zi)𝑛
𝑖=1  where Zi= log (1 + Yi) 

If the random variables Yi are independent, identically distributed, and have finite variance, then so do 

the random variables Zi. 

The Central Limit Theorem of Probability Theory says that in the limit, as n→ ∞, the average of n 

independent identically distributed random variables with finite variance is normally distributed. Thus 

under our three assumptions, we have: 

lim𝑛→∞  
1

𝑛
 log(ѕn/ѕ0) is normally distributed 

Our time interval dt is very short. For example, if dt is one second, and each Yi is the random rate of 

return of our investment over one second, then over a single seven hour trading day, we have n = 7 × 60 

× 60 = 25, 200 seconds. It is reasonable to assume at this point that log(ѕn/ѕ0) is normally distributed 

after even just one day. Indeed, it is reasonable to assume that log(ѕn/ѕ0) is normally distributed for all n, 

with each Zi normally distributed with identical means and variances. 
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Let: 

μ = E(Zi)/dt 

𝜎 = 𝑉𝑎𝑟(Zi)/dt 

Then Zi is N[μdt, 𝜎2
dt]. Define: 

dXi= (Zi – μdt)/ 𝜎 

Then: 

Zi = μdt + 𝜎dXi where dXi is N[0,dt] 

Define: 

s(t) = the value of the investment at time t 

and let: 

n = t/dt 

Then: 

log(ѕ(t)/ѕ(0)) = log(ѕn/ѕ0) 

     =  (Zi)𝑛
𝑖=1  

         =  (𝜇𝑑𝑡 +  𝜎𝑑𝑋𝑖)𝑛
𝑖=1  where dXi is N[0,dt] 

  =  𝜇𝑑𝑡𝑛
𝑖=1  + 𝜎𝑑𝑋𝑖𝑛

𝑖=1  

= nμdt+ 𝜎 𝑑𝑋𝑖𝑛
𝑖=1  

= μt+ 𝜎  𝑑𝑋𝑖𝑛
𝑖=1  

The variables dXi are independent normally distributed random variables and each has mean 0 and 

variance dt. 𝑑𝑋𝑖𝑛
𝑖=1 also is normally distributed and has mean 0 and variance n×dt = t.  

Thus we have: 

   log(ѕ(t)/ѕ(0)) = μt + 𝜎Xi where X is N[0,dt]   (Eq1.10) 

ѕ(t)/ѕ(0) = 𝑒𝜇𝑡 + 𝜎𝑋𝑖                                        (Eq1.11) 
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ѕ(t)= ѕ(0)𝑒𝜇𝑡 + 𝜎𝑋𝑖        (Eq1.12) 

Note that μt + 𝜎Xis normally distributed N[μdt, 𝜎2
dt], so s(t)=s(0) is lognormally distributed 

LN[μdt, 𝜎2
dt]. 

When t = 1 (one year) we have: 

ѕ(1)= ѕ(0)𝑒𝜇 + 𝜎𝑋where X is N[0,1] 

ѕ(1)= ѕ(0)e
Ẋ
 where Ẋ is N[0,1]   (Eq1.13) 

Finally, consider the change in value ds(t) of the investment s over a short time interval [t, t + dt]. We 

have: 

ѕ(t+dt)= ѕ(t)𝑒𝜇𝑑𝑡 + 𝜎𝑑𝑋  where dX is N[0,dt] 

ds(t)=  ѕ(t+dt)–ѕ(t) 

ds(t)/ѕ(t)= ѕ(t)𝑒𝜇𝑑𝑡 + 𝜎𝑑𝑋 – 1 

This equation holds at all times t, so we have the following stochastic differential equation which 

describes the behavior of our risky investment over time: 

                  ds/ѕ = 𝑒𝜇𝑑𝑡 + 𝜎𝑑𝑋 – 1 where   dX is N[0,dt]        (Eq1.14) 

Compare this equation (Eq1.14) to the ordinary differential equation (Eq1.8) we derived in for the 

behavior of a risk-free investment over time with continuous compounding: 

ds/s = 𝑒𝜇𝑑𝑡 – 1                       (Eq1.15) 

The difference between these equations is that equation (Eq1.14) has the additional random term 𝜎dXto 

account for the uncertainty (riskiness) of our investment. Equation (Eq1.15) is the special case of 

equation (Eq1.14) when 𝜎 = 0. 

Equation (Eq1.14) is one formulation of the lognormal random walk model. μ is the continuously 

compounded expected rate of return of the investment, and 𝜎 is the standard deviation of the 

continuously compounded returns. 
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2 Client’s details for retirement planning 

Suppose Elvis is 25 years old. He currently earns a gross salary of $40,000 per year. He has a defined 

contribution retirement program at work where he contributes 10% of his gross salary via monthly 

payroll deduction and his employer adds a generous 1-for-1 matching contribution of 10% of his gross 

salary. Elvis can contribute more than the standard 10% if he wishes (he doesn't currently), but he 

doesn't get any matching contribution from his employer for any such additional savings. Elvis's 

retirement portfolio has been growing for a few years and has a current market value of $250,000.  

Elvis tells us that he would like to retire at age 60 and have enough money so that his standard of living 

in retirement will be the same as his standard of living in his last year of work prior to retirement. He 

wants his income during retirement to keep up with inflation. His only source of income will be his 

retirement portfolio savings from his job. Elvis wants to know what his chances are of achieving his 

goal. How might we go about trying to help Elvis figure out his problem using a random walk model we 

developed? 

 

3 Developing the Model 

We have four main problems to solve in developing a random walk model to help Elvis plan for his 

retirement: 

1. How much money does Elvis need to accumulate in order to retire with his stated goals? 

2. How do we calculate his asset allocation? 

3. How do we estimate the parameters μ and 𝜎 for the random walk model? 

4. How do we enhance the model to accommodate Elvis's monthly savings and his employer's 

matching contribution? 

5. How do we compute the density and cumulative density functions for the enhanced random walk 

model? 

Let's solve these problems in order. 
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3.1 Problem 1: How Much Money Do We Need? 

We look at Elvis's paycheck stubs and discover that he is paying the typical 35% of his gross salary in 

Loans and 5% towards life/health insurance premiums. In addition, Elvis is currently putting away 10% 

of his gross salary as retirement savings, which is another expense he will not have when he retires. So 

Elvis only needs to replace 50% of his last year's gross salary to maintain his net yearly income in 

retirement. Note that we do not subtract federal or state income taxes in this analysis, since Elvis will 

still have to pay those taxes when he retires.  For simplicity, we assume that Elvis will be in the same 

tax bracket. This seems to be a reasonable assumption since his income will be about the same. We have 

now determined that Elvis's retirement portfolio must be large enough to replace 50% of his gross salary 

when he retires in order to maintain his standard of living. 

 

Let x = 50% of Elvis's gross salary in his last year of work prior to retirement. This is the amount Elvis 

withdraws from his portfolio during his first year of retirement. In his second year he adjusts x for 

inflation and withdraws another x dollars. In his third year he adjusts x again, withdraws another x 

dollars, and so on throughout his retirement. How big does Elvis's retirement portfolio have to be to 

support these yearly inflation-adjusted withdrawals of x dollars? This is a complicated topic which we 

will discuss in detail later. For now we make the assumption that 3% is a reasonable inflation-adjusted 

withdrawal rate. Thus Elvis needs to accumulate 1/3% = 33 times x dollars in his retirement portfolio. x 

is 50% of Elvis's last year's gross salary. So Elvis needs to accumulate33 times 60% = 16.67~17 times 

his last year's gross salary. This solves our first problem. 

 

3.2 Problem 2: How do we calculate his asset allocation? 

We use fuzzy logic controls to work out two things: 

a) Elvis’s risk tolerance ability based on his annual income and total networth 

b) Elvis’s asset allocation based on his risk tolerance ability and age 
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First we present a simple model of client's risk tolerance ability which depends on his/hers annual 

income (AI) and total networth (TNW).The control objective of the client financial risk tolerance policy 

model is for any given pair of input variables (annual income, total networth) to find a corresponding 

output, a risk tolerance (RT) level. Suppose the financial experts agree to describe the input variables 

annual income and total networth and the output variable risk tolerance by the sets  

Annual Income ≜A = {A1, A2, A3} = {L, M, H} 

Total Networth≜B = {B1, B2, B3} = {L, M, H} 

Risk Tolerance ≜C = {C1, C2, C3} = {L, MO, H} 

Hence the number of terms in each term set is n = m = l = 3. The terms have the following meaning: 

L≜low, M≜medium, Hhigh, MO≜moderate. They are fuzzy numbers whose supporting intervals 

belong to the universal sets U1 = {ϰ x 10
3
|0≤ ϰ ≤ 100}, U2 = {y x 10

3
|0≤ y ≤ 100}, U3 = {z x 10

3
|0≤ z ≤ 

100}. The real numbers ϰ and y represent dollars in thousands and hundreds of thousands, 

correspondingly, while z takes values on a psychometric scale from 0 to 100 measuring risk tolerance. 

The numbers on that scale have specified meaning for the financial experts. 

The terms of the linguistic variables annual income, total networth, and risk tolerance described by 

triangular and part of trapezoidal numbers formally have the same membership functions presented 

analytically below:  

Eq (3.1) 

𝜇𝐿 𝑣 =  

1       𝑓𝑜𝑟  0 ≤ 𝑣 ≤ 20
50 − 𝑣

30
𝑓𝑜𝑟  20 ≤ 𝑣 ≤ 50   

𝜇𝑀 𝑣 =

 
 
 

 
 
𝑣 − 20

30
𝑓𝑜𝑟  20 ≤ 𝑣 ≤ 50

80 − 𝑣

30
𝑓𝑜𝑟  50 ≤ 𝑣 ≤ 80
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𝜇𝐻 𝑣 =  

𝑣 − 50

30
𝑓𝑜𝑟  50 ≤ 𝑣 ≤ 80

1         𝑓𝑜𝑟  80 ≤ 𝑣 ≤ 100
  

Next step is setting the if … and … then rules of inference called also control rules or production rules. 

The number of the rules is nm, the product of the number of terms in each input linguistic variable A and 

B. For the client financial risk tolerance model n = m = l = 3. Hence the number of if … then rules is 9 

and the number of different outputs is 3. Assume that the financial experts selected the rules presented 

on the decision below. 

 Total Networth B 
A

n
n
u

al
 I

n
co

m
eA

  L M H 

L L L MO 

M L MO H 

H MO H H 

 

The rules have as a conclusion the terms in the output C (see Eq3.1). 

They read: 

Rule 1: If client's annual income (CAI) is low (L) and client's total networth (CTN) is low (L), then 

client's risk tolerance (CRT) is low(L); 

Rule 2: If CAI is L and CTN is medium (M), then CRT is L; 

Rule 3: If CAI is L and CTN is high (H), then CRT is moderate (MO); 

Rule 4: If CAI is M and CTN is L, then CRT is L; 

Rule 5: If CAI is M and CTN is M, then CRT is MO; 

Rule 6: If CAI is M and CTN is H, then CRT is H; 

Rule 7: If CAI is H and CTN is L, then CRT is MO; 

Rule 8: If CAI is H and CTN is M, then CRT is H; 

Rule 9: If CAI is H and CTN is H, then CRT is H. 

Here following Mamdani (1975) we define the rule of inference as a conjunction-based rule expressed 

by operation ˄ (min); rk is called conclusion or consequent. Hence we have  
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pi˄ qj ˄ rk = min(𝜇𝐴𝑖 𝑥 ,𝜇𝐵𝑗 𝑦 ,𝜇𝐶𝑖𝑗 𝑧 ), rk = rij ; 

i = 1,….,n; j = 1,….,m; k = 1,….,l; and (𝑥; y; z) ∈ A × B × C ⊆ U1× U2 × U3. 

Rule 1: p1˄ q1˄ r11 = min(𝜇𝐿 𝑥 ,𝜇𝐿 𝑦 ,𝜇𝐿 𝑧 ), 

Rule 2: p1 ˄ q2 ˄ r12 = min(𝜇𝐿 𝑥 ,𝜇𝑀 𝑦 ,𝜇𝐿 𝑧 ), 

Rule 3: p1 ˄ q3 ˄ r13 = min(𝜇𝐿 𝑥 ,𝜇𝐻 𝑦 ,𝜇𝑀𝑂 𝑧 ), 

Rule 4: p2 ˄ q1 ˄ r21 = min(𝜇𝑀 𝑥 , 𝜇𝐿 𝑦 ,𝜇𝐿 𝑧 ), 

Rule 5: p2 ˄ q2 ˄ r23 = min(𝜇𝑀 𝑥 ,𝜇𝑀 𝑦 ,𝜇𝑀𝑂 𝑧 ), 

Rule 6: p2 ˄ q3 ˄ r23 = min(𝜇𝑀 𝑥 ,𝜇𝐻 𝑦 ,𝜇𝐻 𝑧 ), 

Rule 7: p3 ˄ q1 ˄ r31 = min(𝜇𝐻 𝑥 ,𝜇𝐿 𝑦 ,𝜇𝑀𝑂 𝑧 ), 

Rule 8: p3 ˄ q2 ˄ r32 = min(𝜇𝐻 𝑥 ,𝜇𝑀 𝑦 ,𝜇𝐻 𝑧 ), 

Rule 9: p3 ˄ q3 ˄ r33 = min(𝜇𝐻 𝑥 ,𝜇𝑀 𝑦 ,𝜇𝐻 𝑧 ), 

Elvis’s readings: ϰ0 = 40in thousands (annual income) and y0 = 25 in ten of thousands (total networth). 

The fuzzy inputs are calculated from (Eq3.1). Note that ϰ = 40 and y = 25 are substituted for 𝑣 instead 

of 40,000 and 250,000 since ϰ and y are measured in thousands and ten of thousands. The result is 

𝜇𝐿 40  = 1/3,  𝜇𝑀 40  = 2/3, 𝜇𝐿 25  = 5/6,  𝜇𝑀 25  = 1/6  

For ϰ = ϰ0 = 40 and y = y0 = 25 the decision Table reduces to an induced Table  

Table 3.1 - Induced decision table for the Elvis’s financial risk tolerance model. 

 𝜇𝐿 25  = 5/6 𝜇𝐿 25  = 5/6 0 

𝜇𝐿 40  = 1/3 𝜇𝐿 𝑧  𝜇𝐿 𝑧  0 

𝜇𝑀 40  = 2/3 𝜇𝐿 𝑧  𝜇𝑀𝑂 𝑧  0 

0 0 0 0 

 

There are four active rules, 1,2,4,5 and the strength of these rules (the and part) is calculated as follows: 

α11= 𝜇𝐿 40 ˄𝜇𝐿 25  = min (1/3, 5/6) = 1/3, 

α12 = 𝜇𝐿 40 ˄𝜇𝑀 25  = min (1/3,1/6) = 1/6, 
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α21= 𝜇𝑀 40 ˄𝜇𝐿 25  = min (2/3,5/6) = 2/3 

α22 = 𝜇𝑀 40 ˄𝜇𝑀 25  = min (2/3,1/6) = 1/6 

These results are presented in the rules strength Table. 

Table 3.2 - Rules strength table for the client’s financial risk tolerance model. 

 𝜇𝐿 25  = 5/6 𝜇𝐿 25  = 5/6 0 

𝜇𝐿 40  = 1/3 1/3 1/6 0 

𝜇𝑀 40  = 2/3 2/3 1/6 0 

0 0 0 0 

 

For the control outputs (CO) of the rules we have  

CO of rule 1 :α11˄𝜇𝐿 𝑧  = min (1/3, 𝜇𝐿 𝑧 ), 

CO of rule 2 : α12 ˄𝜇𝐿 𝑧  = min (1/6, 𝜇𝐿 𝑧 ), 

CO of rule 3 :α21˄𝜇𝐿 𝑧  = min (2/3, 𝜇𝐿 𝑧 ), 

CO of rule 4 :α22 ˄𝜇𝑀𝑂 𝑧  = min (1/6, 𝜇𝑀𝑂 𝑧 ), 

The result concerning only the active cells is given on Table 5.8. 

Table 3.3 – Control Output table 

. . . . . . . . . . . . 

. . . 1/3˄𝜇𝐿 𝑧  1/6˄𝜇𝐿 𝑧  . . . 

. . . 2/3˄𝜇𝐿 𝑧  1/6˄𝜇𝑀𝑂 𝑧  . . . 

. . . . . . . . . . . . 

 

The output of the four control rules now have to be aggregated in order to produce one control output with 

membership function 𝜇𝑎𝑔𝑔 𝑧 . It is natural to use for aggregation the operator ˅ (or) expressed by max: 

𝜇𝑎𝑔𝑔 𝑧  = max (1/3˄𝜇𝐿 𝑧 , 1/6˄𝜇𝐿 𝑧 , 2/3˄𝜇𝐿 𝑧 , 1/6˄𝜇𝑀𝑂 𝑧 ) 

Now, for a real number α and a fuzzy set C with a membership function 𝜇𝐶 𝑧 , we define  

α˄𝜇𝐶 𝑧  = min (α11, 𝜇𝐶 𝑧 ) 

Therefore the aggregated output of the control rules is: 

𝜇𝑎𝑔𝑔 𝑧  = max {min (2/3, 𝜇𝐿 𝑧 ), min(1/6,𝜇𝑀𝑂 𝑧 )} 
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is geometrically represented in Figure 3.1 

 

Figure 3.1- Aggregated output for the client financial risk tolerance model. 

 

Let us defuzzify the aggregated output for the client financial risk tolerance model using Height 

defuzzification method (HDM). First we express analytically the aggregated control output with 

membership function 𝜇𝑎𝑔𝑔 𝑧  shown on Figure 3.12. It consists of the four segments P1P2, P2Q, QQ2, 

and Q2Q3 located on the straight lines μ = 2/3 and μ = (50 – z)/30, μ = 1/6 and μ = (90 – z)/10, 

correspondingly. Solving together the appropriate equations gives the projections of P2, Q, Q2 on z axis, 

namely 30, 45, 75 (Figure 3.2). They are used to specify the domains of the segments forming 𝜇𝑎𝑔𝑔 𝑧 . 

Hence 

𝜇𝑎𝑔𝑔 𝑧  = 

 
 
 

 
 

2

3
 𝑓𝑜𝑟 0 ≤ 𝑧 ≤ 30

50−𝑧

30
 𝑓𝑜𝑟 30 ≤ 𝑧 ≤ 45 

1

6
 𝑓𝑜𝑟 45 ≤ 𝑧 ≤ 75

80−𝑧

30
 𝑓𝑜𝑟 75 ≤ 𝑧 ≤ 80

  

Figure 3.2 - Defuzzification: client financial risk tolerance model. 
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HDM is a generalization of mean of maximum method. Besides the segment P1P2 with height p there is 

another at segment Q1Q2 with lower height q. The midpoint of the interval [η1, η2], the projection of 

Q1Q2 on z, is (η1+η2)/2. Then the HDM produces ẑh: 

ẑh = { p(ζ1+ pζ2)/2 + q(η1+η2)/2 }/ (p + q) = w1(ζ1+ ζ2)/2 + w2 (η1+η2)/2             (Eq3.2) 

Substituting  μ = 1/6 into μ= (z – 20)/30 gives the number 25, the projection of the point Q1. Hence the 

flat segments P1P2 and Q1Q2 in Fig have projections [0,30] and [25,75] and heights 2/3 and 1/6 

correspondingly, i.e. ζ1 = 0, ζ2= 30, η1 = 25, η2= 75, p = 2/3, q = 1/6. The result of substituting these 

values in HDM is  

ẑh= 22. 

The financial experts could estimate the clients financial risk tolerance given that his annual income is 

$40,000 and total networth is $250,000 to be 22 on a scale from 0 to 100 if they adopt the HDM. 

Accordingly a conservative risk investment strategy could be suggested. However, the conclusion of the 

FLC model, namely the crisp value 22(HDM) measuring the risk tolerance on the scale from 0 to 100 to 

be too small for a person with annual income 40,000 and total networth 250,000. Hence we need to fine-

tune the model making slight change to the terms of output C-risk tolerance. The modified terms are 

shown on Figure 3.3. 

Figure 3.3 – Aggregated Output 
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In comparison to Figure 3.1 there are several changes: (1) The new terms L and H have new supporting 

intervals [0, 65] instead of [0, 50] and [65, 100] instead of [50, 100], correspondingly; (2) the new term 

MO has its peak shifted to the left by 15 units; it is still a triangular number but not in central form. 

Assuming everything else in the model in stays without change, firing of the same rules produces here 

the aggregated output given in Figure 3.4. 

Figure 3.4 – Aggregated Output 

 

Solving together μ = 2/3 and μ = (80 – z)/15, μ = 1/6 and μ = (z – 65)/15, μ = 1/6 and μ = (90 – z)/10 we 

find that the projections of P1P2 and Q1Q2 are [0,70] and [67.5, 88.33] respectively.  

Therefore using the HDM method the non fuzzy control output is 

ẑh≈ 45. 

Therefore our new risk tolerance has increased to 45.  

We now go on to define the asset allocation of Elvis based on his risk tolerance hence arrived at, and for 

this we need to model another FLC where the inputs (linguistic variables) in the fuzzy logic client asset 

allocation model are age and risk tolerance (risk) and there are three outputs(linguistic variables), 

savings, income, and equity. Nevertheless the technique in the earlier model can be applied but that 

requires the design of three decision tables. The control objective is for any given pair (age, risk) which 

reflects the state of a client to find how to allocate the asset to savings, income, and growth. 

Assume that the financial experts describe the two input and three output variables by the terms of 

triangular and trapezoidal shape as follows: 
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Age≜ {Y (young), MI (middle age), OL (old)} 

Risk≜ {L (low), MO (moderate), H(high)} 

Saving≜ {L (low), M(medium), H (high)} 

Income≜ {L (low), M(medium), H (high)} 

Growth≜ {L (low), M(medium), H (high)} 

The universal sets (operating domains) of the input and output variables areU1 = {ϰ |0≤ ϰ ≤ 100}, U2 = 

{y |0≤ y ≤ 100}, U3 = {zi |0≤ zi ≤ 100, i = 1,2,3}. The real numbers ϰ represents years and y takes values 

on a psychometric scale from 0 to 100 and zi take values on scale from 0 to 100.The terms of linguistic 

variables risk, savings, income, and growth are described by the same membership functions as the 

linguistic variables in the previous model Eq 2.a. The variable age differs slightly from the other 

variables; the membership functions of its terms are: 

(Eq3.3) 

𝜇𝒀 𝑥 =  

1       𝑓𝑜𝑟  𝑥 ≤ 20
45 − 𝑣

25
𝑓𝑜𝑟  20 ≤ 𝑥 ≤ 45  

𝜇𝑴𝑰 𝑥 =

 
 
 

 
 
𝑥 − 20

25
𝑓𝑜𝑟  20 ≤ 𝑥 ≤ 45

70 − 𝑥

25
𝑓𝑜𝑟  45 ≤ 𝑥 ≤ 70

  

𝜇𝑶𝑳 𝑥 =  

𝑥 − 45

25
𝑓𝑜𝑟  45 ≤ 𝑥 ≤ 70

1         𝑓𝑜𝑟  70 ≤ 𝑥
  

There are nine if ... and ... then rules like in the previous model but each inference rule produces three 

(not one) conclusions, one for savings, one for income, and one for growth. Consequently the financial 

experts have to design three decision tables. Assume that these are the tables presented below. 
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Table3.4 - Decision table for the output savings. 

 Risk Tolerance 

A
g
e 

 Low Moderate High 

Young M L L 

Middle M L L 

Old H M M 

 

Table 3.5 - Decision table for the output income. 

 Risk Tolerance 
A

g
e 

 Low Moderate High 

Young M M L 
Middle H H M 

Old H H M 
 

Table 3.6 - Decision table for the output growth. 

 Risk Tolerance 

A
g
e 

 Low Moderate High 

Young M M L 
Middle H H M 

Old H H M 
 

For instance the first two if ... then rules read: 

If client's age is young and client's risk tolerance is low, then asset allocation is: medium in savings, 

medium in income, medium in growth. 

If client's age is young and client's risk tolerance is moderate, then asset allocation is: low in savings, 

medium in income, high in growth. 

Consider Elvis whose age is ϰ0 = 25 and risk tolerance level as calculated earlier isy0 = 45. Matching the 

readings 25 and 45 using Eqs. (5.3) and (6.1) gives the fuzzy reading inputs 

𝜇𝒀 25  = 4/5,  𝜇𝑴𝑰 25  = 1/5, 𝜇𝑳 45  = 1/6,  𝜇𝑴𝑶 45  = 5/6  

The strength of the rules calculated using (5.10) are: 

α11= 𝜇𝒀 25 ˄𝜇𝑳 45  = min (4/5, 1/6) = 1/6, 

α12 = 𝜇𝒀 25 ˄𝜇𝑴𝑶 45  = min (4/5,5/6) = 4/5, 
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α21= 𝜇𝑴𝑰 25 ˄𝜇𝑳 45  = min (1/5,1/6) = 1/6, 

α22 = 𝜇𝑴𝑰 25 ˄𝜇𝑴𝑶 45  = min (1/5,5/6) = 1/5 

The control outputs of the rules are presented in the active cells in three decision tables 

Table 3.7- Control output savings 

 Low  Moderate 

Young  1/6 ˄𝜇𝑴 𝑧1   4/5 ˄𝜇𝑳 𝑧1  

Middle  1/6 ˄𝜇𝑴 𝑧1   1/5 ˄𝜇𝑳 𝑧1  

Table 3.8 - Control output income. 

 Low  Moderate 

Young  1/6 ˄𝜇𝑴 𝑧2   4/5 ˄𝜇𝑴 𝑧2  

Middle  1/6 ˄𝜇𝑯 𝑧2   1/5 ˄𝜇𝑯 𝑧2  

Table 3.9 - Control output growth. 

 Low  Moderate 

Young  1/6 ˄𝜇𝑴 𝑧3   4/5 ˄𝜇𝑯 𝑧3  

Middle  1/6 ˄𝜇𝑳 𝑧3   1/5 ˄𝜇𝑴 𝑧3  

The outputs in the four active cells in Tables 3.7-3.9 have to be aggregated separately. The results 

obtained by following the earlier model are: 

𝜇𝑎𝑔𝑔 𝑧1  = max {min (1/6, 𝜇𝑴 𝑧1 ), min(4/5,𝜇𝑳 𝑧1 )} 

𝜇𝑎𝑔𝑔 𝑧2  = max {min (4/5, 𝜇𝑳 𝑧2 ), min(1/5,𝜇𝑯 𝑧2 )} 

𝜇𝑎𝑔𝑔 𝑧3  = max {min (1/5, 𝜇𝑴 𝑧3 ), min(4/5,𝜇𝑯 𝑧3 , min(1/6,𝜇𝑳 𝑧3 )} 

Figure 3.5 - Aggregated output savings. Defuzzification. 

 

Figure 3.6 - Aggregated output savings. Defuzzification. 
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Figure 3.7 - Aggregated output savings. Defuzzification. 

 

The aggregated outputs shown on Figures3.5 -3.7 are defuzzified by using HDM. The results are given 

in the same figures. 

The projections of the flat segments can be easily found using their height and the relevant equations of 

inclined segments indicated in the figures. Substituting gives the projection of P2 to be 26. Substituting 

gives the projections of Q1 and Q2 to be 25 and 75. Similarly one can find that the projections of P1P2 

and Q1Q2 in Figure3.3 are the intervals [44,56] and [56, 100]. There are three at segments P1P2, Q1Q2, 

and R1R2 in Figure 3.4. Their projections are [74,100], [26, 74], and [0,45]. 

Then using the defuzzification formula (Eq3.2) we find 

ẑh1 ≈ 19 (saving), 

ẑh2 ≈ 56 (income), 

ẑh3 ≈ 71 (growth), 

The sum ẑh1 + ẑh2 + ẑh3  = 146.42 represents the total asset (100%). Rearranging this gives the following 

asset allocation of the client whose age is 25and risk tolerance 45: 
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Savings : 19.38% → 13.18%; 

Income : 55.60% → 37.81%; 

Growth : 71.44% → 48.58%; 

Rounding off gives savings 13%, income 38%, and growth 49%. Therefore Elvis’s asset allocation is 

decided upon based on his risk tolerance(45) and age(25). 

 

3.3Problem 3: How Do We Estimate the Parameters? 

How do we estimate the parameters μ and 𝜎 for the random walk model? 

First we deal with salary raises and inflation. It may not be obvious what these issues have to do with 

parameter estimation, but that should become clear shortly. 

A good way to model inflation and salary growth is to use real rates of return relative to Elvis's salary 

growth rather than nominal returns. So when we use our time series data to estimate the model 

parameters we need to apply the conversion formula given above. The next issue that affects parameter 

estimation is investment expenses. Brokers, mutual fund investment companies, insurance companies, 

and retirement plan management companies all charge fees. We do a bit of research and discover that 

Elvis's investment expenses in his retirement plan are 35 basis points (0.35%).To properly model Elvis's 

portfolio, when we do our parameter estimation, before converting from nominal to real returns, we 

must subtract 0.35% for Elvis's investment expenses. 

To summarize, Elvis's yearly salary increase is 1.5% in excess of inflation. His investment expenses 

are35 basis points.His asset allocation is: Cash (savings) 13%, Bonds (income) 38%, and Stocks 

(growth) 49%. We're now ready to do the parameter estimation for our random walk model. We have 

the following four sets of historical market time series data from 2003 through 2013: 

C = Cash (saving) = 90 day Treasury bills yearly returns 

B = Bonds (income) = 10 year Govt of India bonds yearly returns 

C = Stocks (growth) = CNX NIFTY index yearly returns 
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I = Inflation = Consumer Price Index percent change, the average inflation for the past 10 years  

is 6.64% and that is taken as a constant for calculations.  

We construct a new time series N for the nominal return of Elvis's portfolio after expenses as follows: 

N = 0.13× C + 0.38× B + 0.49× S – 0.0035      (Eq3.3) 

We then convert from nominal returns to real returns relative to Elvis's salary growth: 

R = (N – (I + 0.015)) / (1 + (I + 0.015))      (Eq3.4) 

We finally estimate the parameters μ and 𝜎 for our model by converting to continuous compounding and 

finding the mean and standard deviation: 

μ= E(log(1 + R)) = 0.06984 

𝜎= Var(log(1 +  R))  = 0.15344 

Note that the expected continuously compounded real rate of return after expenses for Elvis's portfolio 

relative to his salary growth is 6.98%, with rather large standard deviation of 15.33%. 

 

3.4 Problem 4: How Do We Enhance the Model? 

The random walk model we developed in the earlier section is: 

ds/ѕ = 𝑒𝜇𝑑𝑡 + 𝜎𝑑𝑋 – 1 where    dX is N[0,dt] 

In this stochastic differential equation, dt is an infinitesimal time interval, ds is the change in the 

portfolio value over the time interval, and dX is a random variable with variance dt. 

This equation has a useful property for computation. dt does not have to be an infinitesimal time 

interval. It can be any time interval. For example, the equation works fine with dt = one day, dt = one 

month, or dt = one year. We change notation to recognize this: 

∆s/ѕ = 𝑒𝜇∆𝑡 + 𝜎∆𝑋– 1 where ∆X is N[0,∆t] 

Unfortunately, this model does not deal with periodic savings or withdrawals from the portfolio. We 

have to add an extra term to accommodate this: 

∆s/ѕ = 𝑒𝜇∆𝑡 + 𝜎∆𝑋– 1 + (k∆t/s)        where ∆X is N[0,∆t]  (Eq3.5) 
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s(t+∆t) = s(t)𝑒𝜇∆𝑡 + 𝜎∆𝑋– 1 + k∆t   where ∆X is N[0,∆t]  (Eq3.6) 

Where k is the constant yearly extra amount added to (k> 0) or withdrawn from (k< 0) the portfolio in 

even installments at the end of each time period ∆t. 

Equations (Eq3.5) and (Eq3.6) are our enhanced random walk model for retirement planning. In Elvis's 

case he contributes 10% of his gross salary via monthly payroll deduction and his employer contributes 

a 10% matching contribution. Thus for Elvis's model we use k = 0.20 and ∆t = 1/12 = 0.08333. 

We now have a complete random walk model for Elvis's retirement plan. To summarize everything we 

have done so far, the model is given by equations (Eq3.5) and (Eq3.6) above with the following 

parameters: 

μ = 0.06984 

𝜎 = 0.15344 

s0 = 5.0 

k = 0.20 

∆t = 1/12 = 0.8333 

t = 35 

Elvis's goal is to accumulate a total of 17 times his salary, s(t) = 17. Elvis would like to see the 

cumulative density function for s(t). This would give him an answer to his primary question what are my 

chances of reaching my goal? This leads us to our last problem number 5. 

 

3.5 Problem 5: How Do We Do the Computations? 

How do we compute the density and cumulative density functions for the enhanced random walk 

model? 

Let n = t/∆t and ∆Xi = independent N [0, ∆t] random variables for i = 1…n. 

It is a bit laborious but quite easy to show by induction that: 

ѕ(t) = ѕ(0) 𝑒𝜇∆𝑡 + 𝜎∆𝑋𝑖  𝑛
𝑖=1 +  𝑘∆𝑡𝑛−1

𝑖=1  + 𝑒𝜇∆𝑡 + 𝜎∆𝑋𝑖  𝑛
𝑗=𝑖+1 + k∆t (Eq3.7) 
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The first term is the growth of our initial portfolio value over the full t year period. 

The second term is the sum of the growth of each monthly savings amount k∆t over the months from the 

time the savings are added to the portfolio through the end of the full period. The last term is the last 

month's savings, made at the end of the month. 

We can rewrite this equation as: 

ѕ(t) = ѕ(0)𝑒𝜇∆𝑡 + 𝜎(  ∆𝑋𝑖 𝑛
𝑛=1  + k∆t 𝑒𝜇(𝑛−𝑖)∆𝑡 + 𝜎  ∆𝑋𝑖𝑛

𝑗=𝑖+1𝑛−1
𝑖=1 + k∆t 

Can we simplify this equation further? Note that s(t) is a sum of n lognormally distributed random 

variables plus a constant, but the random variables are not independent, and even if they were, their sum 

would not be lognormally distributed. (The product of two independent lognormally distributed random 

variables is lognormally distributed, but their sum is not). We seem to be at an impasse. s(t) no longer 

has a simple distribution which we can easily compute, so our retirement savings graphs are going to be 

harder to calculate. How might we go about computing the density and cumulative density functions for 

s(t)? 

Our goal is to graph the density function and the cumulative density function for s(t). Suppose we 

simulate some large number of random walks in our enhanced model, say 100,000 of them, and record 

all the ending values. We end up with a long list of 100,000 ending values. To graph the density 

function, we partition the range of ending values into a number of evenly spaced buckets and count up 

the number of ending values in each bucket. We draw a histogram of the result. If our buckets are 

sufficiently narrow, say only one screen pixel wide in our graph on the screen, and if our number of 

samples is sufficiently large, the result is a close approximation to the density function graph. The 

cumulative density function is also easy to compute.  

To estimate Probe(s(t) <k) for any k, simply walk through the list and count up the number of elements 

which are less than k. The function value is the count divided by 100,000.Monte Carlo simulation is the 

technique we implement for our enhanced model. Fortunately, modern personal computers are so fast 

that this technique is quite feasible and works well in practice. 
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4 Model in action 

Figure 4.1 shows the density and cumulative density functions for s(15) for Elvis's current retirement 

savings. From the cumulative density function, we see that Elvis will meet definitely meet his goal of 

s(15) = 17. 

Figure 4.1 – 35 Year Cumulative Density Function 

 

Elvis now has a 50/50 chance of meeting his goal. But what if the markets do worse or better than the 

median over the next 35 years? How do these possibilities affect Elvis's retirement plans? To help 

measure the impact of various possible outcomes, we introduce the notion of Elvis's relative standard of 

living in retirement. We define this to be the ratio of Elvis's net income after retirement to his net 

income in his last working year prior to retirement. Elvis's goal is to have this ratio be at least 1.0. A 

ratio less than 1.0 is bad. A ratio greater than 1.0 is good. Before he retires, Elvis's net income is 95%–x 

measured as a percentage of his gross salary (he continues to pay 5% annually for his health insurance). 

After he retires, his net income is his social security income plus the 3% withdrawal from his retirement 

portfolio. Let p be the value of Elvis's portfolio when he retires. Then his net income after retirement is 

0.03p , again measured as a fraction of his gross salary.  
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We divide to get: 

Relative standard of living = 0.03p / (0.95–x) 

Consider the 10th and 90th percentiles in the cumulative density graph in Figure 4.1. The ending values 

p are 25.55 and 221.51 respectively. We have x = 10% =0.1 (his regular savings as discussed in the 

section 3). Plugging in these values in our equation gives relative standard of living ratios of 0.90 and 

7.80. Thus, if the markets do unusually poorly over the next 35 years (at the 10
th 

percentile or worse), 

Elvis must accept 90% or less of his desired standard of living after retirement, assuming he is not 

willing to continue working after age 60. If Elvis is concerned about this possibility, which he probably 

should be, he may want to save a little bit more. 

On the other hand, if the markets do well over the next 35 years (at the 90
th 

percentile or better), Elvis 

can retire with 7.8 times his target standard of living, or even more. Elvis is quite thrilled at this 

prospect! In our analysis of Elvis's retirement plan we see once again that uncertainty rules the world of 

investing. Elvis is 35 years away from retirement, yet we can only give him an 80% chance that his 

post-retirement standard of living will be somewhere between 90% and 780% of his pre-retirement 

standard of living. This is a wide range of possible outcomes, and it only covers 80% of the possibilities! 

 

There are several things Elvis could do to try to deal with this problem. First, Elvis could adopt a 

different retirement strategy; instead of withdrawing a constant inflation-adjusted amount every year 

from his portfolio, he could perhaps try to withdraw less than usual during years in which the market 

isn't doing well. A second thing Elvis could do is use all or part of his retirement savings when he retires 

to purchase a lifetime annuity from an insurance company. This is infact a popular decision made by 

many retirees. The insurance company guarantees a steady income stream for as long as Elvis lives.  

 

5 Conclusion and assumptions and Possible Directions for Future Work 
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The Random Walk Model designed was able to deliver a retirement plan (derived from a cumulative 

density function graphed by running Monte Carlo simulations) based on current age of an investor, his 

current risk tolerance ability, his monthly savings towards retirement, his asset allocation (derived from 

a fuzzy logic control system) his current portfolio value, his current expenditures and his expected 

retirement goal. With such mathematical rigor we could provide the client with a relative standard of 

living ranging from .9 to 7.8 times. The model also allows an investor to choose his withdrawal rates to 

suit his relative standard of living.  

We have made several strong simplifying assumptions about Elvis's retirement plan. We assumed that 

Elvis does not vary his asset allocation over the 35 years remaining until his planned retirement. This 

assumption is called constant relative risk aversion. This is a strong assumption. There is no reason to 

assume that all investors have constant relative risk aversion.  

Our random walk model can be modified to accommodate these more complicated kinds of relative risk 

aversion. Instead of being constants, our parameters μ and 𝜎 become functions of the portfolio value s. 

We also assumed that Elvis saves the same constant fraction of his gross salary every month. For some 

investors, as they get older and their children leave home and they pay off their mortgages (for 

example), they may find that they are able to save a much larger fraction of their gross salary for 

retirement. To accommodate these kinds of situations, in our model we must change the parameter k to 

be a function of time instead of a constant. We have also assumed that Elvis's future salary growth rate 

is some constant amount in excess of inflation. This assumption does not take into account the 

variability of this excess amount or allow for the modeling of salary growth rates which we expect to 

increase or decrease as Elvis gets older. It would be possible to enhance the model for these factors by 

making the salary growth rate in excess of inflation a random variable with its own estimated growth 

rate and volatility parameters. On an even more ambitious scale, it is certainly conceivable that we could 

enhance the model and the program to do a complete life-cycle plan. Such a model and simulation 

might, for example, combine the pre-retirement and post-retirement analysis, take into account Elvis's 
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human capital during his working years as part of the risk aversion machinery, and accommodate his 

desire (if any) to leave a bequest for his heirs. 
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Appendix I – Yearly Return Calculations of Bonds & Stocks 

The yields of 10 Year Govt of India Bonds are fetched from database, the difference between the yields 

at the beginning of the year and end of the year is then multiplied by the Duration to arrive at the yearly 

returns of the GOI Bonds. 

Dates Yield Beginning 

Yield 

Ending 

Yield 

Difference in Yield Duration (A) x (B) Return 

12/31/1998 12.22%     (A) (B)     

12/31/1999 11.22% 12.22% 11.22% -0.99% 6.03 5.98% 18.20% 

12/28/2000 10.95% 11.22% 10.95% -0.28% 6.25 1.72% 12.95% 

12/31/2001 7.94% 10.95% 7.94% -3.01% 6.31 18.97% 29.92% 

12/31/2002 6.07% 7.94% 6.07% -1.87% 7.08 13.24% 21.18% 

12/31/2003 5.13% 6.07% 5.13% -0.94% 7.63 7.16% 13.23% 

12/31/2004 6.55% 5.13% 6.55% 1.42% 7.94 -11.29% -6.16% 

12/30/2005 7.11% 6.55% 7.11% 0.56% 7.49 -4.19% 2.36% 

12/29/2006 7.61% 7.11% 7.61% 0.50% 7.32 -3.64% 3.48% 

12/31/2007 7.79% 7.61% 7.79% 0.18% 7.17 -1.30% 6.31% 

12/31/2008 5.26% 7.79% 5.26% -2.53% 7.12 18.02% 25.81% 

12/31/2009 7.59% 5.26% 7.59% 2.33% 7.90 -18.38% -13.12% 

12/31/2010 7.92% 7.59% 7.92% 0.33% 7.18 -2.37% 5.22% 

12/30/2011 8.57% 7.92% 8.57% 0.65% 7.08 -4.59% 3.33% 

12/31/2012 8.05% 8.57% 8.05% -0.52% 6.90 3.57% 12.14% 

12/31/2013 8.83% 8.05% 8.83% 0.77% 7.05 -5.46% 2.59% 
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Appendix II – Portfolio Return Calculation 

Salary Growth 1.5% 
Bond Allocation 38% 
Stock Allocation 49% 
Cash Allocation 13% 
Std deviation 15.34% 
Mean 6.98% 

 

Bonds = 10 year Govt Bonds 
Stocks = CNX NIFTY 
Cash = 90 days Govt T-Bill  
CPI = consumer price index 

 

  Yearly returns Nominal Return Real continuous 

Year Cash Bonds Stocks CPI (change) Cash Bonds Stocks Portfolio Portfolio 

                    

2003 4.23% 13.23% 71.90% 6.64% -7.02% -1.53% 17.74% 32.66% 28.26% 

2004 4.78% -6.16% 10.68% 6.64% -6.95% -10.32% -3.77% -1.83% -1.84% 

2005 5.33% 2.36% 36.34% 6.64% -6.89% -6.46% 5.24% 12.86% 12.10% 

2006 6.32% 3.48% 39.83% 6.64% -6.77% -5.95% 6.47% 14.95% 13.94% 

2007 7.09% 6.31% 54.77% 6.64% -6.67% -4.67% 11.72% 22.81% 20.54% 

2008 7.67% 25.81% -51.79% 6.64% -6.61% 4.17% -25.73% -18.55% -20.52% 

2009 3.54% -13.12% 75.76% 6.64% -7.10% -13.47% 19.10% 25.07% 22.37% 

2010 5.01% 5.22% 17.95% 6.64% -6.92% -5.16% -1.22% 5.49% 5.35% 

2011 7.71% 3.33% -24.62% 6.64% -6.60% -6.02% -16.18% -14.14% -15.24% 

2012 8.36% 12.14% 27.70% 6.64% -6.52% -2.03% 2.21% 12.74% 11.99% 

2013 8.23% 2.59% 6.76% 6.64% -6.54% -6.36% -5.15% -0.12% -0.12% 

 

Appendix III - Yearly Calculation of 90 days Govt T-Bill 

The annualized yields of 90 days T-Bill are divided by 4 to arrive at a quarterly yield and then the 

quarterly yields over 4 quarters are added to arrive at the yearly returns.   

Dates Annual 

Yield 

Quarterly 

Yield 

Cumulative 

Annual Yield 11/27/2003 4.23 4.23 4.23 

2/23/2004 4.325 1.08125 4.77875 

5/22/2004 4.38 1.095   

8/21/2004 4.825 1.20625   

11/18/2004 5.585 1.39625   

2/16/2005 5.225 1.30625 5.325 

5/17/2005 5.165 1.29125   

8/16/2005 5.135 1.28375   

11/14/2005 5.775 1.44375   

2/10/2006 6.575 1.64375 6.3225 

5/12/2006 5.625 1.40625   

8/10/2006 6.36 1.59   

11/8/2006 6.73 1.6825   

2/6/2007 7.3 1.825 7.09375 

5/7/2007 7.525 1.88125   

8/6/2007 6.35 1.5875   

11/2/2007 7.2 1.8   

2/1/2008 7.05 1.7625 7.665 

5/2/2008 7.285 1.82125   

7/30/2008 9.25 2.3125   

10/29/2008 7.075 1.76875   
 

Dates Annual 

Yield 

Quarterly 

Yield 

Cumulative 

Annual Yield 1/27/2009 4.625 1.15625 3.5375 
4/27/2009 3.125 0.78125  
7/24/2009 3.225 0.80625  

10/23/2009 3.175 0.79375  
1/21/2010 3.8 0.95 5.0125 
4/21/2010 4.25 1.0625  
7/20/2010 5.45 1.3625  

10/18/2010 6.55 1.6375  
1/17/2011 7.1 1.775 7.71 
4/15/2011 7.16 1.79  
7/15/2011 8.1 2.025  

10/13/2011 8.48 2.12  
1/11/2012 8.44 2.11 8.355 
4/10/2012 8.75 2.1875  
7/9/2012 8.2 2.05  

10/8/2012 8.03 2.0075  
1/7/2013 8.1 2.025 8.229375 
4/5/2013 7.8247 1.956175  
7/4/2013 7.4678 1.86695  

10/3/2013 9.525 2.38125  
12/31/2013 8.625 2.15625  

 

Years Cumulative Annual Yield 

2003 4.23% 

2004 4.78% 

2005 5.33% 

2006 6.32% 

2007 7.09% 

2008 7.67% 

2009 3.54% 

2010 5.01% 

2011 7.71% 

2012 8.36% 

2013 8.23% 

 


